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Elect rohydrodynamic Charge R e  l axa t  ion 

ana 

In t e r f ac i a l  Perpendicular-Field I n s t  a b i l i t y  

* 
James R. Melcher and Charles V. Smith, Jr. 

Department of E lec t r i ca l  Engineering 

Mass achuse t t s I n s t i t u t e  of Technology 

Summary: The small amplitude motions of a plane in te r face  between two f lu ids  

s t ressed by an i n i t i a l l y  perpendicular e l e c t r i c  f i e l d  are investigated.  

f l u ids  are modeled as ohmic conductors and the  convection of the surface charge 

The 

caused by the dynamic in te rp lay  of i n t e r f a c i a l  e l e c t r i c  shear s t r e s ses  and the 

viscous s t r e s ses  i s  highlighted. The influence of v i scos i ty  on i n s t a b i l i t y  

growth r a t e s  i n  the zero-shear stress l i m i t s  of per fec t ly  conducting and per- 

f ac t ly  insulat ing in te r faces  is described and compared t o  cases involving elec- 

t r i c a l  shear s t resses .  Detailed a t ten t ion  i s  given t o  the i n s t a b i l i t y  of an 

in te r face  between f lu ids  having e l e c t r i c a l  relaxation times long compared t o  

t i m e s  of i n t e re s t .  It is  shown t h a t ,  f o r  many common l iqu ids ,  even a s l i g h t  

amount of surface charge makes the  in te r face  unstable at a considerably lower 

voltage than would be expected from theor ies  based on the dielectrophoretic 

l i m i t  of no i n t e r f a c i a l  free charge. 

ac s t r e s s e s ,  gradually increased dc fields, and abruptly applied dc fields,sup- 

port  the theo re t i ca l  model. I n s t a b i l i t y  conditions f o r  two l iqu ids  having short  

Experiments, performed using high frequency 

relaxation t i m e s  are developed t o  show shear stresses are  not important unless 

conductivit ies are the same order of  magnitude. 
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In  the  general case,  the elec- 
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t r i c  Hartmann number is iden t i f i ed  as an index t o  the  dominance of the  

e l e c t r i c  shear stresses over the viscous shear s t r e s ses  i n  determining the  

i n t e r f a c i a l  convection of f ree  charge. 

mann number, the i n t e r f  ce behaves e s sen t i a l ly  as a perfect  conductor w i t h  

In the  l i m i t  of large e l e c t r i c  H a r t -  

the e l e c t r i c  s t r e s s  giving s t a t i c  i n s t a b i l i t y .  

I. INTRODUCTION 

Elect rohydmdyn i c  i n s t a b i l i t y  of the  in te r face  between two f lu ids  s t ressed  

by an i n i t i a l l y  perpendicular e l e c t r i c  f ie ld  has received considerable a t ten-  

t ion .  (l'q) Even so, there  remain major disparities between experimental obser- 

vations and theo re t i ca l  explanations thus far developed. Such discrepancies 

can often be t raced  t o  the f i n i t e  f ree  charge relaxat ion t i m e ,  which i n  tu rn  

leads t o  i n t e r f a c i a l  e l e c t r i c  shear forces.  

I n  order t h a t  a f l u i d  in te r face  s t ressed  by an e l e c t r i c  f i e l d  be f r ee  of 

shear s t r e s ses ,  there  must e i t h e r  be no free charge on the in te r face  ( i n  which 

case i n t e r f a c i a l  forces are  e n t i r e l y  due t o  induced polar iza t ion) ,  o r  the in t e r -  

face must be per fec t ly  conducting. If the dynamics are influenced by the f i n i t e  

f ree  charge relaxation time, ne i ther  of these l imi t ing  cases per ta ins ;  e l e c t r i c a l  

shear force e f f ec t s  are  involved. It follows tha t  a self-consis tent  model f o r  

t h i s  c l&s  of in te rac t ions  must include a mechanism, such as viscous shears,  f o r  

placing the in te r face  i n  shear-stress equilibrium. 

A. Problem 

To appreciate the  objectives of t h i s  work, consider an experiment i n  w h i c h  

the i n i t i a l l y  f l a t  in te r face  between two f lu ids  is  stressed by a perpendicular 

e l e c t r i c  f i e l d ,  as shown i n  Fig. 1. 

(a) and (b)  respectively above and below the in te r face  are applied by means of 

plane electrodes p 

source. The gravi ta t iona l  acceleration, g, ac t s  i n  the  -z direction. 

The uniform field8 Ea and % i n  the  regions 

a l l e l  t o  the x - y plane, which are driven by a po ten t i a l  



X 

Fig. 1 Configuration of in te r face  and applied e l e c t r i c  f i e l d  ip t ens i ty ,  
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Suppose first t h a t  t h e  lower f l u i d  is  much more highly conducting than 

t h e  upper one (water and air, f o r  an example) and has an e l e c t r i c a l  re laxat ion 

t i m e  which i s  short  compared t o  any electromechanical times of i n t e r e s t .  It 

i s  w e l l  ve r i f i ed  (192'3) t h a t  the  in te r face  i s  unstable a t  the Taylor wavelength 

2Wk" i f  

where E 

T i s  the surface tension. 

t i on  t h a t  charge relaxat ion i n  t h e  lower f l u i d  is instantaneous, experiments w i l l  

be described wherein Eq. (1) accurately pred ic t s  the onset of i n s t a b i l i t y  w i t h  

f l u ids  t h a t  are  highly insulat ing.  For example, i f  i n  an experiment using an 

electronegative gas and transformer o i l  ( re laxat ion t i m e  about 10 sec . )  t h e  elec-  

and Eb, pa and pb are the respective p e m i t t i v i t i e s  and dens i t ies  and 

Even though t h i s  expression i s  based on the assump- 

a 

t r i c  fields are raised slowly (over a period of minutes) 

turbat ions on the in te r face  ( cha rac t e r i s t i ca l ly ,  droplet-e j ec t ing  cusps of 

revolution) i s  predicted by Eq. (1). 

the  incipience of per- 

The success of the per fec t ly  conducting model i n  dealing w i t h  a highly 

insu la t ing  l i q u i d  i s  perhaps not surpr is ing.  

c ip le  of exchange of stabil i t ies appl ies .  

greater than tha t  required f o r  onset,  t he  growth rate is  very near ly  zero. 

Although the charges re lax slowly, it can be argued 

keeping up w i t h  the i n t e r f a c i a l  dynamics, because the latter might proceed at 

an even slower rate. 

the  t i m e  constant f o r  i n s t a b i l i t y  is far shor te r  than the  e l e c t r i c a l  re laxat ion 

t i m e .  

According t o  the model, the  prin- 

With an e l e c t r i c  stress s l i g h t l y  

t h a t  they have no t rouble  

But it is more d i f f i c u l t  t o  explain the observation tha t  

The per fec t ly  conducting in t e r f ace  i s  one of t w o  cases where there are no 

electric shear stresses. 

po ten t i a l  t o  the electrodes.  

The ,second is exemplified by applying an a l t e rna t ing  

With t h e  period shor t  c a p s r e d  t o  both the  elec-  



t r i c a l  re laxat ion t i m e  and electromechanical times of i n t e r e s t  , t he  in t e r -  

face does not accrue appreciable free charge and is  influenced by the  average 

of the applied e l e c t r i c  fields. 

v e r i f i e d  (4'5) t h a t ,  as the  fields are ra i sed ,  i n s t a b i l i t y  sets i n  as 

In t h i s  "dielectrophoretic l i m i t " ,  it i s  w e l l  

2 * - + %) = 2Tk 

where Ea and % are the rms values of t h e  applied f i e l d s .  

With the  exception of highly polar  l i qu ids ,  the polar izat ion i n s t a b i l i t y  

predicted by Eq. (2)  is  a w e a k  effect compared t o  the  free charge i n s t a b i l i t y  

of Eq. (l), i n  the sense t h a t  a much grea te r  voltage is  required i n  the second 

case. 

Consider a t h i r d  experiment which seemingly should be described by Eq, (2) .  

Fluids are used which have long e l e c t r i c a l  re laxat ion times compared t o  the dy- 

namical times of i n t e r e s t  ( f o r  instance,  a 10 see. re laxat ion t i m e  compared t o  

a f rac t ion  of a second f o r  an i n s t a b i l i t y  t o  develop). The voltage i s  applied 

t o  the  electrodes as a s t ep  after the  electrodes have been shorted f o r  many 

relaxat ion t i m e s .  

f i e d ,  i n s t a b i l i t i e s  appear i n  a f r ac t ion  of a second. This is t rue  even though 

the conditions f o r  polar izat ion i n s t a b i l i t y  as given by Eq. (2)  are far from 

sa t i s f i ed .  

i n t o  play f o r  experiments having a duration short  compared t o  the  e l e c t r i c a l  

re laxat ion t i m e  ; however, the simple experiment does not support t h i s  view, 

and chara.cterizes the  type of observations t h a t  s t i l l  require physical  explana- 

t i on .  

If the  applied voltage is  su f f i c i en t  t h a t  Eq. (1) i s  satis- 

It would seem t h a t  only purely polar izat ion e f f ec t s  should come 

I n  t h e  following sect ions,  t he  i n t e r f a c i a l  dynamics w i l l  be modeled by 

assuming a constant surface tension and an ohmic electrical conduction confined 

t o  the  bulk of the  respective f lu ids .  On e i t h e r  side of the  in t e r f ace ,  t h e  
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f l u i d s  are homogeneous, w i t h  e l e c t r i c a l  conductivies ua and bb9 dens i t ies  pa 

and pb, and v i scos i t i e s  1.1, and b. 
bulk is zero,  and the  coupling between f l u i d  and f i e l d  i s  confined t o  the 

Hence the  e l e c t r i c a l  force density i n  the  

(6  I in te r face .  

B. Related Work 

The ohmic, homogeneous f l u i d  model developed here f o r  an in te r face  s t ressed  

by a perpendicular e l e c t r i c  f i e l d  has been used f o r  a s i m i l a r  invest igat ion of 

i n t e r f a c i a l  dynamics wi th  a tangent ia l  f i e l d .  ") In  tha t  work, it is  emphasized 

tha t  t h e  model can be used t o  understand such i n t e r f a c i a l  responses as over- 

s t a b i l i t y ,  but only i f  the i n t r i n s i c  b ipolar  conduction dominates t h a t  due t o  ion 

streaming from the electrodes.  S imi la r  l imi ta t ions  on the  physical s ignif icance 

of t h e  theory apply here, although i n  working w i t h  two f lu ids  (one of which is  

highly insu la t ing  and i n  e l e c t r i c a l  "series connection" w i t h  the o ther )  the con- 

duction i s  su f f i c i en t ly  s m a l l  t o  obviate t he  necessi ty  f o r  ion f i l ters  on the 

electrodes.  

Some xark(8) has been done concerning the e f f e c t s  of f i n i t e  conductivity 

on the configuration of Fig. 1. However, the model used i s  not self-consis tent ,  

i n  t h a t  account i s  not taken of the balance of shear stresses at the in te r face ,  

w i t h  v i scos i ty  brought i n  as a "second order" effect. 

i n s t a b i l i t i e s  and other  s i t ua t ions  dominated by the normal stress dynamics of the 

For the study of parametric 

i n t e r f ace ,  i n t e r f a c i a l  shears can possibly be ignored, but such an approach leaves 

i n  doubt the main i ssue  of the present investigation: t he  ro l e  of the  e l e c t r i c a l  

shear stresses. I 

The same c r i t i c i sm applies t o  work related t o  the s t a b i l i t y  of cy l indr ica l  

where the balance of e l e c t r i c a l  shear  stresses i s  ignored. Unless 

considerable foresight  is used, t he  s ingular  nature of the i n t e r f a c i a l  electrical 
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forces makes the  l i m i t  of zero v iscos i ty  ambiguous and renders r e s u l t s  based 

on an inv isc id  model meaningless. 

used 'consis tent ly  i n  any case i n  which e l e c t r i c a l  shear forces are important, 

except i n  terms of an "equivalent" model which must be j u s t i f i e d  a p o s t e r i o r i ,  

using the  solut ion f o r  the self-consis tent  problem. 

Certainly,  the inv isc id  model cannot be 

An extreme case i n  which e l e c t r i c a l  shear forces are important is the one 

where the in te r face  supports free charge, but where both conductors have ex- 

tremely long relaxat ion times. Then, t he  in te r face  dynamics are intimately 

involved w i t h  the  in te rp lay  of t h e  e l e c t r i c a l  shear forces ,  and the convection 

of charge at the in te r face .  Here again,  previous work has failed t o  recognize 

t h i s  important point (lo'll) by not including t h e  e f f e c t s  of e l e c t r i c a l  shear 

s t r e s ses  and the convection of surface charge. 

11. THEORETICAL MODEL 

A.  Bulk  Dvnamics 

"he basic  electrohydrodynamic model f o r  t h e  f l u i d s  and t h e i r  in te r face  

i s  t l e  same as tha t  used t o  study an in te r face  stressed by a tangent ia l  equ i l i -  

brium e l e c t r i c  f ie ld . ( ' l )  The per t inent  bulk equations are the same, and solu- 

tions are merely summarized here f o r  the mechanical and e l e c t r i c a l  perturbations 

frorn equilibrium, defined i n  each region as t h e  primed quant i t ies  

p = - pgz + II + p? ' (x ,z , t )  

The s t a t i c  pressure and equilibrium e l e c t r i c  f i e l d  in t ens i ty  

i n  the two f l u i d s  and, l i k e  other  var iab les ,  w i l l  be distinguished by (a)  and 

(b). 

and Eo differ 
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Even w i t h  t he  e l e c t r i c  f ie ld ,  the system is invariant  t o  a ro ta t ion  

about the  z axis ,  hence there is  no loss of genera l i ty  i n  confining at ten-  

t i o n  t o  per turbat ions t ha t  are independent of y. The in te r face  def lect ion 

from equilibrium takes t h e  form 

A 

6 = R e  5 exp(st  - jkx)  

while the bulk solut ions s imi la r ly  are of the form 

( 4 )  

and, from Ref. 7,  the complex amplitude functions of z are wri t ten i n  terms of 

t h e  a rb i t r a ry  constants,  A ,  B, and C ,  as 

A 

v = A exp $2 + B expqz 

e = C exp $2 

Z 

h 

X 
A A 

v = - j DvZ/k 
X 

h A 

e = jDex/k 
2 

where D d/dz, (3 = - k i n  region (a) and $ = k i n  region (b )  wi th  In a 

pos i t ive ,  real number. Also, q = - qa = - (k2* s / v ~ ) ' ~  and q = qb = (k2+ s/vb) '/2 

i n  the  respective regions where q and qb must have pos i t ive  real par t s  and a 

v = V/P-  
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B. Surface Coupling 

The bulk solut ions involve the  s i x  coef f ic ien ts  A, B, and C i n  each f l u i d  

determined by boundary conditions on the in te r face .  

the  bulk equ 

be i n  equilibrium and t h a t  both the normal and shear ve loc i t i e s  be continuous. 

A model consis tent  with 

ions requires  t h a t  the normal and shear stresses on the in t e r f ace  

Two addi t ional  conditions are provided by conservation of charge and cont inui ty  

of t h e  tangent ia l  e l e c t r i c  f ie ld .  

i t e  the  stress conditions,  it is  necessary t o  r e c a l l  t h a t  i n  equi l i -  

brium, the pressure d is t r ibu t ion  is hydrostat ic ,  and that  the normal equilibrium 

component of' e l e c t r i c  stress gives 

where OF0 =" Fa - Fb. 
balance, again i n  the  z direct ion 

Inf in i tes imal  perturbations are governed by t h e  stress 

The balance of perturbation shear stresses requires t ha t  

The last two equations have 

at the  equilibrium posi t ion 

ous perturbation quant i ty  

been l inear ized ,  so t h a t  they are t o  be evaluated 

of the in te r face .  Since the  veloci ty  i s  a continu- 

o v z o =  o 
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The l inear ized  x component of t he  condition x OEO = 0 is  

Fina l ly ,  conservation of free charge on the  in t e r f ace  requires  t h a t  

The las t  s i x  equations represent t h e  required boundary conditions. Unlike t h e  

tangent ia l  f i e l d  case of Ref. 7,with t h e  perpendicular f i e l d  

surface charge density Q = 

t h e  equilibrium 

n€Eo makes a l i n e a r  contribution t o  the conserva- 

t i o n  of charge boundary condition. 

It i s  now a straightforward matter t o  subs t i t u t e  t h e  solut ions summarized 

by Eqs. (6 - 10) i n t o  the boundary conditions (12 - 17).  The resu l t ing  expres- 

s ions are l i n e a r  and homogeneous i n  the  coef f ic ien ts  ( A  ,A ,B ,B ,C ,C ), and 

the  determinant of t h e  respective coef f ic ien ts  is  given by Eq. (181, w i t h  

a b a b a b  

(NOTE: See page 10 f o r  Eq. 18) 

f = gopi- Tk2. 

C .  Dispersion Equation 

The compatibility condition t h a t  t he  determinant of the  coef f ic ien ts  vanish 

i s  the dispersion equation. Considerable manipulation y i e lds  a form which, i n  

the  l i m i t  of no e l e c t r i c  f i e l d ,  reduces t o  t h a t  discussed by Chandrasekhar . (12 1 
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where 

The complexity of Eq. (19) reflects the  var ie ty  of possible s i t ua t ions  

inherent t o  the  model and emphasizes t h e  necessi ty  f o r  r e l a t ing  the  general case 

t o  less involved l imi t ing  s i tua t ions .  

111. ZERO SHEAR-STRESS DYNAMICS 

A. Dispersion Equation 

As indicated i n  the  introduction, there are two commonly encountered 

l imi t ing  cases i n  which the  in te r face  i s  free of shear stresses. It i s  help- 

f u l  t o  i den t i fy  and develop these l imi t ing  cases so t h a t  they can be placed i n  

contrast  with t h e  more involved s i tua t ions  i n  which shear e f f e c t s  are important. 

With t h e  lower f l u i d  su f f i c i en t ly  highly conducting, r e l a t i v e  t o  the upper one, 

t h a t  % Ea and has/a aa 1, we have Cp * - E ~ E ~ ,  0 0 ,  and J, + 0 so that  a 

-,.I.=, - a,)+ k 2 ~ ~  + ek s2ed - 
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where 

V: = c a ~ i / ( p a  + pb) (Surface at constant po ten t i a l )  (21) 

In  the  opposite extreme, where both f l u i d s  have relaxation times &/o 

long compared t o  1/1s1 and there  i s  absolutely no free charRe on the  in t e r -  

- face, so that  o€EO = 0 ,  Eq. (19) again reduces t o  Eq. (201, but w i t h  

2 
(Ea-'b) 

( Insu la t ing  l i qu ids ,  no (22 1 2 

free surface charge) pa + %)('a + 'b ( 

These two classes  of in te rac t ion  are referred t o  as EH-If and EH-Ip i n  R e f .  2. 

The dispersion equation accounts f o r  t h e  e f f e c t s  of v i scos i ty ,  but because the 

e l e c t r i c a l  forces are a l w a y s  normal t o  the in t e r f ace ,  the  e f f e c t s  of t he  elec- 

t r i c  stress are similar t o  those af gravi ty  and surface tens*. Note t h a t  

there  i s  no "equivalent surface tension",  s ince the  dependence of t h e  elec- 

t r i c  contribution i n  Eq. (20) is  on k2, whereas t h a t  of the surface tension 

tern i s  on k3. 

B. Exchange of S t a b i l i t i e s  

For a disturbance with a given wavelength, the e l e c t r i c a l  contribution t o  

Eq, (20) can be grouped wi th  t he  gravi ty  and surface tension terms. This makes 

it evident t h a t  t he  pr inc ip le  of exchange of s t a b i l i t i e s  applies j u s t  as it does 

i n  the  absence of VI ( R e f .  12 ,  page447). 

represents the condition for inc ip ien t  i n s t a b i l i t y  

Thus, t h e  l i m i t  of Eq. (20) as s + 0 

As t he  e l e c t r i c  stress is  ra i sed ,  Eq. ( 2 3 )  shows t h e t  t he  Taylor wavelength 

2 d k *  is t h e  first t o  become unstable,  with a threshold 
7 
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It should be c l e a r  from t h i s  discussion t h a t ,  insofar  as incipience of 

i n s t a b i l i t y  is  concerned, previous work on zero shear stress in te rac t ions  

based on an inv isc id  model per ta ins .  (1,2) 

C. Growth Rates: Liquid and a Gas 

The case of a l i qu id  and a gas is pa r t i cu la r ly  important. Common exam- 

p les  are air  and water, i n  which Eq. (21) is  appropriate,  o r  Freon and i t s  

vapor i n  a high-frequency e l e c t r i c  f i e l d ,  where Eq. (22) i s  appropriate. The 

kinematic v i scos i t i e s  are on the  same order;  hence q 2 q while ll K 4 u b .  

I n  normalized form, Eq. (20) then becomes 

a b  a 

- where p = p ,  qb - q,  D~ = 0 so t h a t  t he  normalization which r e f l e c t s  t he  

essential  ro le  of t h e  Taylor wavelength 2r /k  , i s  

b 
* 

Note t h a t  t h i s  represents both of t h e  zero shear cases by simply ident i fy ing  

with the  appropriate VI [Eq. (21) o r  (22)1.  

In sect ion V ,  it w i l l  be shown t h a t  Eq. (25) is a spec ia l  case of t he  

general one where the  relaxation t i m e s  i n  both f l u i d s  are extremely long com- 

pared t o  dynamical times of i n t e r e s t .  There, a seventh order polynomial i n  p 

i s  given which i s  obtained by expanding Eq. (251, using the  def in i t ion  

e s = M(q2 - -  - k 2 )  t o  eliminate E. 

which i n  turn  gives =, 
Thus, Eq. (26) is solved numerically f o r  9, 



The dependence of on k with as a parameter i s  i l l u s t r a t e d  w i t h  Fig. 

2a, which is based on data f o r  a r e l a t ive ly  inv isc id  l i qu id  (10 cs t ransfor-  

m e r  o i l ) ,  and Fig. 2b, computed with M, increased by a fac tor  of lo2. 

The two sets of curves i n  Fig. 2a are f o r  s l i g h t l y  less and somewhat 

grea te r  than t h e f i r e q u i r e d  fo r  i n s t a b i l i t y .  

wavenumbers k = k = P2/2 k [ (P2/2I2 - - 11% t h a t  bound the  unstable band 

Indicated on the axes are the 

- u , R  - 
of wavenumbers, the  wavenumber f o r  maximum rate of growth k = k- = (p2/3) 

+ [(P2/3I2 - 1/3Iv2 and the m a x i m u m  rate of growth &, a l l  predicted by the 

inv isc id  theory. Note t h a t  there  is  l i t t l e  e f f e c t  on any of these quant i t ies  

from the f i n i t e  v i scos i ty  M ,  - at least i n  the range shown. By cont ras t ,  i f  - M 

is  increased by a f ac to r  of lo2, the  dynamics are altered considerably (Fig. 

2b). Waves with 

complex conjugate p a i r  of roots  which, with increasing k, switch t o  two purely 

damped modes. These i n  turn become one purely damped and one purely growing 

mode; f i n a l l y ,  at high wavenumbers , they become two modes of a purely damped 

character.  

= 2 and k s m a l l  are at first s t ab le  and represented by a 

I V .  INFINITE RELAXATION TIME LIIJIIT: LIQUID AND A GAS 

An important case i n  which shear forces can play an e s sen t i a l  ro le  arises 

when both f l u i d s  have relaxation times E/O t h a t  are very long compared t o  l/lsl , 
but there  i s  an equilibrium surface charge on the  interface.  Then, any dis tor-  

t i o n  of the in te r face  must be accompanied by an e l e c t r i c a l  shear stress, and an 

attendant surface convection. 

A. Dispersion Equation 

In  pa r t i cu la r ,  consider t he  case of a l i q u i d  and a gas, so t h a t  i n  Eq. (19) 

not only are ua + 0, ab * 0 ,  

va a ub. 
= E ~ ,  % = K E ~ ,  but also pa<< %, while 

It follows that  the dispersion equation i s  
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where, i n  addi t ion ' t o  the  normalization var iables  of Eqs. (26) we have 

Note t h a t  t he  def in i t ion  of P - i s  consis tent  with t h a t  i n  Eqs. (261, i f  VI i s  

taken as t h a t  f o r  t he  case of a polarization interaction[Eq. (2211. 

- Q is  proportional t o  the  equilibrium surface charge on the  in te r face ;  as sug- 

gested i n  Sec. 111, Eq. ( 2 7 )  i n  t h e  l i m i t  Q + 0, and hence K+ 0,  reduces t o  Eq. 

(25)  when t h i s  la t ter  equation i s  w r i t t e n  f o r  t he  polar izat ion case. Substitu- 

t i o n  i n  Eq. ( 2 7 )  f o r  - s i n  terms of e gives t h e  dispersion equation wr i t ten  as a 

polynomial i n  9. 

The var iable  

+ q3 lM2[k + k 3 -  k2(E2- Q2+ 2W2)] - 5 k4M4 I - - -  - - - - -- 
+ 22 bk5M4+ k M2{k + k3- k2(P2+ Q2- 2 - W2)] } 

-I - - -  - - -  - 
+ 6 (3 M4k6- k2M2[k + k3- k2(P2- Q2+ 2 - W2)]) - -- --I - - -  - 
+' 1- k7M4- (k + k3- k2E2)(k3M2- k Q2)- 2 --- k5W2M2- -- k3W4 } = 0 -- - -  -- - - .  

( 2 9 )  

Numerical solut ions f o r  3 ' s  having pos i t ive  real p a r t s  i n  t u rn  give - -  s = M($- - k2). 
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Although the physical case i n  which the lower f l u i d  i s  per fec t ly  conduct- 

ing  while  t h e  upper one is  insu la t ing  is al together  d i f fe ren t  from t h e  s i tua-  

t i on  f o r  which Eq. (29) is  derived, it is  represented mathematically by Eq. 

( 2 9 )  if 9 = E =  0 and - P i s  evaluated using Eqs. (21) and (26). 

B. Marginal ' Ins tab i l i ty  

The e s s e n t i a l  r o l e  of t he  e l e c t r i c  shear stresses i n  the i n f i n i t e  relaxa- 

t i o n  t i m e  l i m i t  can be appreciated by considering the  manner i n  which 3 and 

influence t h e  exchange of stabil i t ies.  

and then t h e  l i m i t  i s  taken where s -+ 0 ,  it i s  found t h a t  i n s t a b i l i t y  i s  first 

inc ip ien t  at t he  Taylor wavelength 2~r/k* with t h e  voltage as given by Eqs. (22) 

and (24). 

t h e  purely dielectrophoret ic  in te rac t ion  with the interface,  and the  normalized 

jump i n  e l e c t r i c  f i e l d  in t ens i ty  required for i n s t a b i l i t y  is 

If Q, and hence K, are zero i n  Eq. (271, - 
- 

That i s ,  t h e  i n s t a b i l i t y  has the same inc ip ien t  conditions as f o r  

By cont ras t ,  i f  Q, and hence W, are f i n i t e  i n  Eq. (27) and the  l i m i t  i s  taken 

where g -+ 0,  t h e  Taylor Wavelength i s  again the  first t o  give inc ip ien t  ins ta -  

b i l i t y ,  but the  value of P required is  only 

- - 

- 

In  general, f o r  - Q f i n i t e ,  exchange of s t a b i l i t i e s  i s  inc ip ien t  with & = k" - 
fo r  and 9 sa t i s fy ing  

I n  

i s  

terms of t h e  e l e c t r i c  f i e l d  

i d e n t i c a l  with 

i n t e n s i t i e s  at the  in te r face ,  t h i s  expression 
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E E 2 +  Eb5* = 2 Tk* ; a a  (33)  

a condition f o r  inc ip ien t  i n s t a b i l i t y  t h a t  would be obtained i f  t he  in te r face  

were regarded as per fec t ly  conducting (2' 

perfec t ly  insu la t ing  f lu ids .  

48) and bounded on e i t h e r  side by 

The demarcation given by Eq. (32) between regimes of s t a b i l i t y  and in- 

s t a b i l i t y  i n  t he  - -  P - Q plane i s  shown i n  Fig. 3. 

s ingular  regime of' s t a b i l i t y  at 9 = 0 ,  with a m a x i m u m  - P = E a s  given by Eq. 

( 3 0 ) .  

"his f igure a l so  shows the  

C. Dynamics 

The physical s ignif icance of t h e  contours of marginal exchange of sta- 

b i l i t i e s  shown i n  Fig. 3 is clarified by computing the complex frequencies from 

Eq. ( 2 9 1 ,  calculations which indicate  t h a t  the  f irst  i n s t a b i l i t i e s  t o  appear 

as the  e l e c t r i c  stress (P - and - Q) is  increased are indeed static,  and s a t i s f y  

the  pr inc ip le  of exchange of stabil i t ies.  

The dependence of - s on - Q i s  characterized f o r  low and high v iscos i ty  li- 

quids by Figs. b a n d  4b, where e P = 1, a value l a rge  enough t o  secure i n s t a b i l i t y  

according t o  condition (311, but not la rge  enough according t o  Eq. ( 3 0 ) .  Hence, 

i n  terms of the 11 - Q - plane of Fig. 3 ,  t h e  complex frequencies are given i n  Fig. 

4 f o r  a l i n e  p a r a l l e l  t o  t he  2 axis and passing through the poin ts  denoted (a)  - 
( c ) .  

- Q = 

osc i l l a t ions .  

addi t ion there i s  a purely real root ,  ind ica t ing  s t a t i c  i n s t a b i l i t y .  The growth 

These points  are also i den t i f i ed  on Fig. 4. A t  point (a)  of Fig. h a ,  where 

0 ,  there  i s  a s ing le  p a i r  of complex conjugate frequencies, indicat ing damped 

With f i n i t e  2, t he  complex conjugate roots  are retained,  but i n  

rate at firs% increases  rap id ly  with - Q, then goes t o  zero as t h e  point (b)  i s  

approached. 

represented by two complex conjugate p a i r s  of roots.  

I n  t h e  range (b)  - ( c )  t he  in te r face  i s  again s t a b l e ,  but with motions 

Beyond point ( c )  there  is 



I I I I 1 I 

A 4 1 slowly 

Fig. 3 Regime of s t a b i l i t y  i n  t he  c-9 plane, where Q is the normalized 

surface charge and P i s  the  normalized jump i n  e l e c t r i c  f i e l d  

in t ens i ty  at t h e  in te r face .  

zation (dielectrophoret ic)  i n s t a b i l i t y  occurs at A ,  while t h e  f r ee  

charge i n s t a b i l i t y  occurs (asymptotical.ly) at B. Raising the voltage 

slowly gives the t r a j ec to ry  shown, with i n s t a b i l i t y  at. t he  point C. 

K = 

As - P i s  ra i sed  with s =  0 ,  polar i -  

2.56, cha rac t e r i s t i c  of transformer o i l .  
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again a s t a t i c  i n s t a b i l i t y .  

real; one unstable and two damped from ( a )  - (b)  and beyond I C ) ,  and three 

damped i n  the  range (b) - ( c  ) . 

I n  the  more viscous case of Fig. kb, roots  are 

The contours shown i n  Fig. 3 are those of zero growth rate o r  marginal 

i n s t a b i l i t y .  

rate (E  = 0.2, k - = 1) , these appear as shown i n  Fig. 5. 

toward t h e  marginal s t a b i l i t y  curves as t h e  v iscos i ty  i s  reduced. 

If Eq. (29) i s  solved for contours of f i n i t e  constant growth 

The contours tend 

The marked e f f e c t  of t h e  e l e c t r i c a l  shear stresses r e su l t i ng  from the  com- 

bination of a f i n i t e  equilibrium surface charge densi ty ,  $, and a per fec t ly  

insu la t ing  l i q u i d  i s  now clear .  Remember t h a t  the skewed e l l i p s e  of Fig. 5 

i s  iden t i ca l  t o  t h e  curve t h a t  would be obtained with t h e  assumption tha t  the 

in t e r f ace  is per fec t ly  conducting [Eq. (32) o r  (3311. 

in te r face ,  charge convection replaces charge conduction i n  adJusting t h e  charge 

d i s t r ibu t ion  so  t h a t  the  e l e c t r i c  f i e l d  in t ens i ty  remains perpendicular t o  the  

deformed in te r face .  The remarkable f a c t  i s  tha t  t he  convection process can 

With t h e  insu la t ing  

occur so rapidly i n  l i qu ids  l i ke  transformer o i l  t h a t  on t h e  t i m e  s c a k o f  many 

experimental s i t ua t ions  it is  d i f f i c u l t  t o  t e l l  t he  difference between t h e  per- 

f e c t l y  conducting in te r face  and one t h a t  is  pe f e c t l y  insu la t ing .  As w i l l  be 

pointed out i n  Sec. V I I ,  t h i s  i s  t r u e  pa r t i cu la r ly  i n  view of t h e  extreme sen- 

s i t i v i t y  of t he  s t a b i l i t y  condition t o  small amounts of equilibrium surface 

charge. 

V. INSTANTANEOUS RELAXATION LIMIT 

Consider now an extreme which i s  the opposite of t h a t  described i n  See. 

I V :  t h e  e l e c t r i c a l  re laxat ion times i n  both f l u i d s  are short compared t o  t i m e s  

1/1s1 of i n t e r e s t .  



1 .o 2.0 

Contours of constant growth rate s = 0.2, = 1.0 i n  the  -- P-Q 

plane as a function of t h e  v iscos i ty  parameter, 4. 

of zero v iscos i ty ,  the contour becomes the  marginal s t a b i l i t y  

curve of Fig. 3; K.=  2.56. 

Fig. 5 - 
In  the  l i m i t  
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I n  addi t ion,  it i s  assumed t h a t  1s I /v << k2 ; t h a t  mechanical motions are 

characterized by times which are long compared t o  the  viscous diffusion t i m e  

l /k2v.  Then, Eq. (19) reduces t o  a simple dispersion equation which i s  quad- 

at ic i n  s *  

(pa s[2k2(1.1a + U b ) 1  + [gk(pb - Pa) + Tk3- k2S] = 0 ( 3 5 )  

Q E Q ( E ~ E ~ o ~  - + 

It is  c l e a r  from Eq. (35) t h a t  ove r s t ab i l i t y  i s  not possible ,  and once 

Incipience of i n -  again the  pr inc ip le  of exchange of stabilities i s  va l id .  

s t a b i l i t y  occurs as the  last  term i n  Eq. (35) becomes zero. 

With pb > pa 

(S = 0 ) .  

t he  equilibrium i s  s t ab le  i n  the absence of an e l e c t r i c  f i e l d  

Then, as S i s  ra i sed ,  the  first wavelength t o  become unstable i s  

The condition f o r  i n s t a b i l i t y  at t h a t  most it l o r  wavelength 2n/k . 

- -  - k* S 
2T ( 3 7 )  

I n  t h i s  instantaneous relaxat ion l i m i t ,  t he  equilibrium f i e l d s ,  l i k e  t h e  

perturbation fields , are determined by the  conduction. 

and Eq. (37) is wr i t ten  as 

Thus, Eb = (Oa/Ub )Ea , 



where 
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p2 = E E2/k*T 
0 a a  

The dependence of Po' on the  r a t i o  of conduct ivi t ies  oa/ub, as given by Eq. 

(381, i s  i l lustr txted i n  Fig. 6. 

approaches a value t h a t  i s  predicted by using a model tha t  assumes the  in t e r -  

face t o  be per fec t ly  conducting and hence free of e l e c t r i c a l  shear s t r e s ses  

[Eq. (3311. However, i n  the  range where the  conduct ivi t ies  are on the sane 

order,  t h e  e l e c t r i c a l  shear stresses come i n t o  play t o  a degree t h a t  depends 

on the v iscos i ty  parameter, C. 

For e i t h e r  aa/ob> > 1 o r  aa/ub << 1, Pt 

It i s  in t e re s t ing  t o  note t h a t  i n  the pa r t i cu la r  l imi t ing  case i n  which 

oa/ob + 

be come s 

so t h a t  there  i s  no equilibrium i n t e r f a c i a l  charge, Eq. (38) 

P2 0 = 2(Oa/Ub += l)/(oa/ob - 112 (39) 

as can most e a s i l y  be shown by resolving Eq. (37) for P: after taking the 

l imi t ing  case. Because Eq. (39) is va l id  only i f  oa/ob = &a/E.;, , t h i s  i s  

the  same condition as given by E q s .  (22) and (24). 

zat ion in te rac t ion  discussed i n  Sec. 111, the  in te r face  has a threshold f o r  

"has, due t o  the  polar i -  



Dependence of the  normalized e l e c t r i c  pressure P 

the  upper f l u i d  on the  r a t i o  of conduct ivi t ies ,  The parameter1 

is proportional t o  the  sum of the  v i scos i t i e s  and t o  t h e  conduc- 

evaluated i n  
0 Fig. 6 

t i v i t y  of t he  upper f lu id .  For these curves, E /E = 1.22. a b  
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s t a t i c  i n s t a b i l i t y  even i n  the  absence of an equilibrium surface charge den- 

s i t y .  

and, f o r  s m a l l  values of C ,  tends t o  be the  peak value of P t  as Ua/Ub* Ea/Eb 

(Fig. 6.). 

Note t h a t  t h i s  threshold i s  independent of the v iscos i ty  parameter 

V I .  THEORETICAL OBSERVATIONS INCLUDING FINITE RELAXATION TIME EFFECTS 

Even though the  l imi t ing  s i tua t ions  of Sees. I11 - V d i f f e r  grea t ly  i n  

terms of physical  parameters, they have similarities i n  t he i r  dynamical behav- 

i o r .  In all cases, i n s t a b i l i t i e s  exhib i t  a purely exponential growth, and, f o r  

a wide range of physical  parameters, t he  in te r face  s t r e s sed  by a dc f i e l d  tends 

t o  behave as though it were i n f i n i t e l y  conducting. 

ing 

convection of equilibrium surface charge induced by i n t e r f a c i a l  shear stresses 

leads t o  i n s t a b i l i t i e s  with a t t r i b u t e s  approximating those f o r  t he  per fec t ly  

conducting case of Sec. 111. 

In  the  opposite extreme of See. V, where relaxat ion is considered as 

Even w i t h  per fec t ly  insu la t -  

l iqu ids  (Sec. I V ) ,  t o  a degree determined by the  v iscos i ty  parameter E ,  

instantaneous, it i s  found again tha t ,  unless the  free charge density on t he  

in te r face  approaches zero,  t he  incipience of i n s t a b i l i t y  i s  e s sen t i a l ly  as f o r  

t h e  per fec t ly  conducting in te r face .  The degree t o  which t h i s  i s  t r u e  f o r  a 

given r a t i o  of conduct ivi t ies  depends on the  v iscos i ty  parameter C; i n  the l i m i t  

C -t 0,  the range of conductivity r a t i o s  over which t h e  per fec t ly  conducting model 

fails t o  approximate the  i n s t a b i l i t y  condition becomes vanishingly s m a l l .  

As might be expected, a similar behavior is  l i k e l y  over a range of para- 

meter values,  even i f  t he  cha rac t e r i s t i c  dynamical times 1/1s1 are on the  order 

of &/u f o r  one or  both of t h e  f lu ids .  This can be shown from a number of view- 

points ,  one of which is t o  take the  l i m i t  of t h e  dispersion equation (19) as t h e  

f l u i d  v i s c o s i t i e s  become vanishingly small with the  e l e c t r i c  f i e l d  f i n i t e .  Then, 
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regardless of t h e  l i qu id  conduct ivi t ies ,  Eq. (19) reduces t o  the  dispersion 

equation f o r  waves on a per fec t ly  conducting in te r face  between invisc id  f lu ids .  (2 1 
Note t h a t ,  i f  t h i s  l imi t ing  result i s  t o  be obtained by using 

at t h e  ou t se t ,  t he  boundary condition requiring conservation of charge at the  

in t e r f ace  must be ignored, and t h e  condition of zero e l e c t r i c  shear stress 

retained. 

an inv isc id  model 

A quant i ta t ive  statement of conditions under which the  interface behaves as 

a per fec t ly  conducting surface can be made i n  terms of an e l e c t r i c  Hartmann num- 

ber  which generally depends on t h e  pa r t i cu la r  combination of physical  parameters, 

but takes the  form (13) 

He = [ O ~ E 0 ~ / 8 1 . 1 ( 0 ~  + 

In Eq. (lg), i f  the  e l e c t r i c  f i e l d  in t ens i ty  i s  su f f i c i en t ly  large t h a t  

(40) 

then, regardless of t he  relaxation t i m e s ,  t he  dispersion equation reduces t o  

my - k2 (E E2 + cb%) + eks = 0 
s 2  + gk(% - 'a' + pa +pb 

pa +pb a a (44) 

o r  t h a t  f o r  a per fec t ly  conducting, i nv i sc id  in te r face  with an addi t ional  term 

t o  account f o r  viscous damping. In  t h i s  approximation, the  e l e c t r i c  shear 
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stresses dominate those due t o  viscosi ty .  

t h a t  Ma % pb and pa % pb, so tha t  Va % Vb 

and (43) are sa t i s f i ed .  

s q, (0, + 

As a pa r t i cu la r  example, suppose 

and qa % qb. Then, conditions (421 

If charge relaxat ion e f f e c t s  are t o  be important, then 

‘L + E ~ )  and Eq. (41) is  

To obtain a conservative estimate of whether o r  not t h e  approximation i s  j u s t i -  

f i ed ,  q - k + s/2vk i n  Eq. (45). It follows tha t  t he  in te r face  responds essen- 

t i a l l y  as a perfect  conductor if He, as given by Eq. (401, is  large compared 

t o  unity.  

e l e c t r i c  Hartmann numbers be large.  

In  less pa r t i cu la r  instances,  Eqs.  (42)  and (43) a l so  require tha t  

V I I .  EXPERIMEHTS 

As indicated i n  the  introduct ion,  there  are  at least three  experiments 

t h a t  give ins ight  i n t o  t h e  mechanisms of i n s t a b i l i t y  on the  in te r faces  of highly 

insu la t ing  l iqu ids .  In  a l l  of these discussed here,  t h e  upper f l u i d  i s  air o r  

an electronegative gas,  and the  i n t e r f a c i a l  e l e c t r i c  stress i s  establ ished by 

means of a po ten t i a l ,  V,  applied between electrodes p a r a l l e l  t o  t he  in te r face  

and at z = a and z = - b. 

I: the  relaxat ion t i m e s  are i n  a l l  cases i n  excess of 10 seconds. Effects  of 

f r ing ing  f ie lds  are t o  a cer ta in  extent avoided by using the  guard r ing  arrange- 

ment depicted i n  Fig. 7. 

Propert ies  of the t w o  l i qu ids  used are given i n  Table 

The experiments d i f f e r  i n  t h e  temporal dependence of V. 

A. Voltage Applied Gradually 

F i r s t ,  consider t he  case where a dc voltage is  establ ished by r a i s ing  t h e  

po ten t i a l ,  V ,  at a rate l o w  enough (over a period of a minute or more) t o  allow 

t h e  equilibrium charge, Q, t o  relax t o  t h e  interface.  Then, the e l e c t r i c  f i e l d  

in t ens i ty  is  excluded from t h e  l i q u i d  so t h a t  OED = Ea = V / a  and, according t o  



'C 

8;. 7 Cross-sectional view of simple apparatus f o r  measuring conditions 

for  inc ip ien t  i n s t a b i l i t y .  

porous B a l s a  wood guard r ing ,  B y  sa tura ted  by l i q u i d  and as 

near ly  as possible  of t h e  same e l e c t r i c a l  propert ies  as the  l i qu id ,  

and a m e t a l  bottom e lec t rode ,  A. 

The l iqu id ,  C ,  i s  contained by a 

: 
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Eqs . (21) and (24) , t he  in te r face  becomes unstable as V = Vs , where 

(46) v = a [ 4 p g T / ~ ~ l  2 fib 
S 

It is  convenient t o  p ic ture  t h i s  experiment i n  terms of the - P-gplane of 

Fig. 3. By t h e  def in i t ions  of - P and 9, Eqs.  (281, t h i s  experiment i s  con- 

ducted along a path 

- P =  6% 

i n  the P-Q plane,  w i t h  the equilibrium 

applied voltage : 

-- 

(47) 

surface charge proportional t o  the  

Thus, as t h e  voltage i s  raised t h e  experiment follows the t r a j ec to ry  A-B-D of 

Fig. 8. The i n s t a b i l i t y  condition, Eq. (46) , is the voltage at which the  

trajector;r  i n t e r sec t s  t he  e l l i p s e .  

The data point shown i n  Fig. 8 f o r  t h i s  type of experiment is within 10% 

of t h e  theo re t i ca l ly  predicted value of p. 
theory and experiment is  made possible by Figs. 9a and 9b, where the  voltage 

f o r  inc ip ien t  i n s t a b i l i t y  is  given as a function of t h e  upper electrode-inter-  

face spacing, f o r  both s i l i c o n  o i l  ( t he  l i q u i d  used f o r  Fig. 8) and transformer 

o i l .  

B. Yoltqe AFdied Suddenly 

A more de ta i led  comparison between 

The curve denoted by "gradual" i s  predicted by Eq. (46). 

In  the second experiment, a dc voltage is  again ra i sed  slowly t o  follow 

the  t r a j e c t o r y  A-B of  Fig. 8. 

t h a t  given by Eq. (461, there  i s  an equilibrium surface charge density on t h e  

interface given by Eq. (48) and t h e  voltage is abruptly switched from Vo t o  V 

Then, with V = Vo, where V is ye t  less than 
0 

P' 
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0 

1 I I 1 I 1 I I I I I 1 L- 
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Thus, 9 remains constant but - P changes such t h a t  

= Q ; Eaa + %b = V P (49) 

It follows t h a t  

and t h e  experiment follows the t r a j ec to ry  3-C of Fig. 8. If V i s  increased 

so t h a t  t r a j ec to ry  B-C i n t e r sec t s  the  e l l i p s e ,  i n s t a b i l i t y  i s  predicted by 

e i t h e r  Eq. (32) o r  (33). 

P 

The da ta  denoted as "pulsed" i n  Fig. 8 are taken i n  t h i s  manner, again 

using s i l i c o n  o i l .  Insofar  as can be determined experimentally, the  i n s t a b i l i t y  

condition follows t h e  e l l i p t i c a l  contour of Fig. 8 within about lo%¶ even as 

Q + 0 ( i n  the  l i m i t  where t h e  i n i t i a l  b ias  voltage V = 0 ) .  In f a c t ,  the  data  

and curves of Figs. 9a and 9b denoted as "pulsed" are f o r  t h i s  l imi t ing  case of 
0 - 

= 0,  with the  curves predicted by e i t h e r  Eq. (32)  o r  (331, with €J = 0. I 
vO 

C. Voltage Alternating at High Frequency 

Now, consider t h e  dielectrophoret ic  ' l i m i t ,  of no i n t e r f a c i a l  charge, Q,  

as obtained by applying a voltage of su f f i c i en t ly  high frequency (400 Hz) tha t  

charges do not have t i m e  t o  relax t o  the in t e r f ace ,  and damping prevents a res- 

ponse of t he  l i q u i d  t o  t h e  pulsat ing component of t he  e l e c t r i c  stress. Then, 

according t o  Eq. (301, i n s t a b i l i t y  is  inc ip ien t  as P - = This is  shown as 

t h e  pointF on the P axis i n  Fig. 8, a cr i t ical  point t h a t  can be wr i t ten  i n  

terms of the  c r i t i c a l  rms voltage V = 

(491, with Q = 0: 

Vd by uslng Eq. (28) together  with Eqs. 

Vd = b + K a  - [kn2T(K + 1)/E0K]' 
K - 1  

The predict ions of t h i s  expression and data  f o r  two l iqu ids  are a l so  shown i n  

Figs. 9a and gb, and are within experimental e r ro r s  of each other.  



Three experiments of Fig. 8, showing dependence of i n s t a b i l i t y  
F i g *  9 

e 

voltage on the in te r face  electrode spacing. I n  t he  pulsed case,  

t h e  i n i t i a l  b ias  voltage is zero,  comesponding t o  following the  

t r a j e c t o r y  A-G of Fig. 8. The curves are predicted by t he  appro- 

p r i a t e  t heo re t i ca l  expressions. 8 )  Sil icon o i l  
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D. Discussion of Experiments 

The difference between the  theo re t i ca l  thresholds f o r  i n s t a b i l i t y  with 

the  dc f ie ld  voltage turned up slowly, and 

not large.  

s i t ua t ions  a re  e s sen t i a l ly  the  same f o r  

a s l i g h t  tendency f o r  t h e  pulsed experiments t o  require a higher vol t  

suggested by t h e  theory. 

t h  it turned on abruptly,  a re  

As Figs, 9a and 9b show, the  experimental r e su l t s  f o r  these two 

1 l iquids  tested, although there  is  

By cont ras t ,  t he  c r i t i c a l  voltage f o r  the &c experiment is  far higher than 

fo r  e i t h e r  of t h e  dc experiments, and within experimental e r rors  of the  appro- 

p r i a t e  t heo re t i ca l  curves. Thus, there  is a c lea r  ver i f ica t ion  t h a t  the  de 

t rans ien t  experiment does not approach the dielectrophoretic l i m i t  as the 

i n i t i a l  bias voltage (and hence, presumably, the i n i t i a l  i n t e r f a c i a l  surface 

ge approaches zero e 

It is  es sen t i a l  t o  recognize t h a t  t he  e l e c t r i c a l  relaxation times of both 

l iqu ids  (Table I )  are  much longer than the  t i m e  required f o r  observation of 

i n s t a b i l i t y  i n  the  pulsed experiment. 

i n  several  w a y s ,  including conductivity c e l l  m e ~ ~ u r e ~ e n t s  and electromechanical 

resonance techniques, 

t h e  upper electrode (Fig,  7) with a f l ex ib l e  cantilevered f o i l  s t r i p  which ac ts  

as an electrometer movement. 

abruptly moves downward i n  response t o  the char ing current ,  but then continues 

t o  move downward with a t i m e  constant of 10 or  more seconds, asymptotically 

approaching a s t a t i c  equilibrium. 

t h e  time required f o r  es tab l i sh ing  t h a t  p a r t  of the force due t o  images of the 

These re l  at ion times can be establ ished 

However, t he  most d i  e t  of these is  simply t o  replace (14) 

With the  voltage applied suddenly, t he  metal s t r i p  

A recording of t h i s  latter motion r e f l e c t s  

equilibrium free charge on the  interface.  

rence between t h e  results with the  abrupt application of a cons- 

is a t t r ibu tab le  t o  t h e  extreme s e n s i t i v i t y  t a n t  voltage and with an ac vol t  
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of the  i n s t a b i l i t y  condition t o  s m a l l  amounts of equilibrium surface charge. 

T h i s  is i l l u s t r a t e d  by Fig. 5 ,  where the  contour of constant growth rate f o r  

- M = 

t h e  growth rate s =  
7.5 x sec.  Through t n e  mechanism of the i n t e r f a c i a l  shear stress, even 

a small amount of i n t e r f a c i a l  equilibrium charge i s  extremely i n f l u e n t i a l  i n  

determining incipience of i n s t a b i l i t y  with these l iqu ids .  

of 0.1 seconds, the  contour of constant growth rate i s  very nearly the  e l l i p s e ,  

except i n  the  immediate v i c i n i t y  of the - P. axis. In s p i t e  of the  extremely long 

t i m e  constant f o r  es tabl ishing the  equilibrium surface charge, only a small por- 

t i o n  of that  charge is required t o  m a k e  t he  in te r face  behave l i k e  a per fec t ly  

conducting deformable surface. Even more, t h i s  s m a l l  f rac t ion  of the  charge 

3.34 X 1 0 - 2  i s  f o r  the  case of transformer o i l .  I n  terms of ac tua l  t i m e ,  

0.2 corresponds t o  ru? i n s t a b i l i t y  t i m e  constant of 

For a t i m e  constant 

can probably be characterized by a shor t e r  time constant than far the majority 

of ca r r i e r s .  It i s  l i k e l y  that  several  mechanisms f o r  e l e c t r i c a l  conduc- 

t i on ,  each with i t s  own cha rac t e r i s t i c  t i m e  constant, are at work i n  the  commer- 

c i a l  grade l i qu ids  used, and it i s  the longest t i m e  constant t ha t  i s  re fer red  t o  

here. Moreover, it is  possible t h a t  the  in te r faces  support a res idua l  free charge. 

VI11 CONCLUDING R E 2 M K S  

In  the last four  sect ions,  severa l  viewpoints are used t o  emphasize, 

t heo re t i ca l ly  and experimentally,the important consequences of the  e l e c t r i c a l  

shear surface force dens i t ies  induced i n  various s i tua t ions  on a deforming in t e r -  

face s t r e s sed  by an i n i t i a l l y  perpendicular e l e c t r i c  f i e l d  - 
i n t o  play viscous shear stresses and the convection of surface charge. For 

l i qu ids  of low o r  moderate v iscos i ty ,  these shear forces tend t o  induce t h a t  

convection of the i n t e r f a c i a l  free charge required t o  make the electrical in t e r -  

f a c i a l  shear stresses vanish. Thus, the in te r face  tends t o  behave as a per fec t ly  

forces  t h a t  br ing 
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conducting surface,  w i t h  the charge convection replacing t h e  conduction and 

the e l e c t r i c  f i e l d  tending t o  induce s t a t i c  (aper iodic)  i n s t a b i l i t y .  

This work complements invest igat ions previously reported i n  which the  

equilibrium f i e l d  i s  tangent ia l  t o  the in te r face .  (7 )  In t h a t  work it w a s  shawn 

t h a t  a large e l e c t r i c  Hartmann number generally implies overs tab i l i ty .  By 

contrast ,  i n  the case presented here,  s t a t i c  i n s t a b i l i t y  is implied by a 

large e l e c t r i c  Hartmann number regardless of the  e l e c t r i c a l  relaxation t i m e  

F ina l ly ,  it should not be overlooked t h a t  usefu l  r e su l t s  on the  e f f e c t s  

of v i scos i ty  on growth r a t e s  of i n s t a b i l i t y ,  w i t h  and without the  influence 

of charge relaxat ion,  are a byproduct of the development. 
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TABLE I Liquid Propert ies  

Propert ies  Used 

i n  

MKS Units 

Relative permi t t iv i ty ,  K 

Surface tension,  T 

Viscosity,  1.1 

Density, p 

Relaxation t i m e ,  E/U 

Dow Corning 

200 Series  

Si l icon O i l  

2.63 

2.01 x 

0.94 x io3 

> 10 secs.  

G.E. 1OC 

Transformer 

O i l  

2.56 

2 4 x 10-2 

2 

0.87 x i o 3  

> 40 secs. 
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Fig. 1 Configuration of in te r face  and applied e l e c t r i c  f ie ld  in t ens i ty ,  

Fig. 2a Complex normalized frequency, 9, as a function of normalized wave- 

number, Is ,  f o r  cases of zero e l e c t r i c a l  shear stress. Onset of 

i n s t a b i l i t y  occurs as the normalized e l e c t r i c  pressure 

so t h a t  a s t ab le  and an unstable case are shown. The normalized 

= 

viscos i ty  = 3.34 x lo-' i l l u s t r a t i v e  of transformer o i l  with 

p = 
2 0.87 x 103kg/m3, T = 4 X 10-2n./ah., p = 9.15 x 10-3N-sec/m a 

Fig. 2b Parameters as i n  ( a ) ,  except t ha t  3 = 

viscos i ty  effect 

3.34, t o  i l l u s t r a t e  high 

Fig. 3 Regime of s t a b i l i t y  i n  the  E-9 plane, where Q is the normalized 

surface charge and i s  the  normalized jump i n  e l e c t r i c  f i e l d  

in t ens i ty  at the  interface.  

zation (dielectrophoret ic)  i n s t a b i l i t y  occurs at A ,  while the  free 

charge i n s t a b i l i t y  occurs (asymptotically) at B. 

slowly gives the t r a j ec to ry  shown, with i n s t a b i l i t y  at the  point C. 

K = 

As - P i s  raised with - Q = 0 ,  polar i -  

Raising the  voltage 

2.56, cha rac t e r i s t i c  of transformer o i l .  

Figo 4 Normalized complex frequencies, as a function of surface charge 

Points (a) - ( c )  correspond t o  those shown on Fig. 3 ,  density,  - Q. 

where P = 1. - 
a )  The v iscos i ty  i s  t h a t  of transformer o i l ,  = 3.34 X From 

(a)-(b) and beyond ( c ) ,  there are a complex conjugate p a i r  of roots  

and a purely pos i t ive  real root.  From (b)-(c)  there  are two complex 

conjugate p a i r s  of roots.  

b )  Viscosity parameter 5 = 3.34. From (a)-(b) and beyond ( c ) ,  t h e r e  

m e  th ree  purely real roots ,  one co responding t o  i n s t a b i l i t y .  

(b)-(c) there  are three  roots  representing damping. 

From 

The t h i r d  root ,  

now shown, is  e s sen t i a l ly  constant at f~ = 3. 
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Contours of constant growth rate s = 

plane as a function of the  v iscos i ty  parameter, E. 
of zero v i scos i ty ,  t he  contour becomes the  marginal s t a b i l i t y  

curve of Fig. 3; K = 2.56. 

0.2, & = 1.0 i n  the  -- P-Q - Fig. 5 

In  t h e  l i m i t  

Fig. 6 Dependence of the normalized e l e c t r i c  Dressure Po 

t he  upper f l u i d  on the  r a t i o  of conductivit ies.  The parameterz 

i s  proportional t o  t h e  sum of the  v i scos i t i e s  and t o  the  conduc- 

t i v i t y  o f t h e  upper f lu id .  For these curves, E /E = 1.22. 

evaluated i n  

a b  

Fig. 7 Cross-sectional view of simple apparatus f o r  measuring conditions 

f o r  inc ip ien t  i n s t a b i l i t y .  The l i qu id ,  C ,  i s  contained by a 

porous Balsa wood guard r ing ,  B ,  sa tura ted  by l i q u i d  and as 

nearly as possible of t he  same e l e c t r i c a l  propert ies  as the ' l i qu id ,  

and a m e t a l  bottom electrode,  A. 

Three experiments represented i n  the  P-Q plane. With voltage 

ra i sed  gradually,  t r a j ec to ry  A-B-D is followed, while i f  it i s  

ra i sed  slowly and then increased abruptly,  A-B-C i s  followed. 

With an ac voltage,  t he  t r a j ec to ry  is  A-F. 

curves are f o r  s i l i con  o i l .  

-- Fig. 8 

Data and theo re t i ca l  

Fig. 9 Three experiments of Fig. 8, showing dependence of i n s t a b i l i t y  

voltage on t h e  in te r face  electrode spacing. In  the  pulsed case,  

t he  i n i t i a l  b ias  voltage is  zero, corresponding t o  following t h e  

t r a j ec to ry  A-G of Fig. 8. "he curves are predicted by t h e  appro- 

p r i a t e  t heo re t i ca l  expressions. 

a) Si l icon  o i l  

b )  Transformer o i l  


